ACTL: Adaptive Codebook Transfer Learning for Cross-Domain Recommendation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective Transfer Learning for Cross Domain Recommendation

Collaborative filtering (CF) aims to predict users’ ratings on items according to historical user-item preference data. In many realworld applications, preference data are usually sparse, which would make models overfit and fail to give accurate predictions. Recently, several research works show that by transferring knowledge from some manually selected source domains, the data sparseness probl...

متن کامل

Cross-domain Recommendation by Combining Feature Tags with Transfer Learning

Most recommender systems based on collaborative filtering aim to provide recommendations for a user in one domain. But data sparsity is a major problem for collaborative filtering techniques. Recently, many scholars have proposed recommendation models to alleviate the sparsity problem by transferring rating matrix in other domains. But different domains have different rating scales (e.g., ratin...

متن کامل

Cross Domain Recommendation Using Vector Space Transfer Learning

The cold start problem, frequent with recommender systems, addresses the issue in cases where we don’t know enough about our users (e.g., the user hasn’t rated anything yet, or there are no user activities) in that specific domain. In our paper we present a simple and robust transfer learning approach where we model users’ behavior in a source domain, transferring that knowledge to a new, targe...

متن کامل

Active Transfer Learning for Cross-System Recommendation

Recommender systems, especially the newly launched ones, have to deal with the data-sparsity issue, where little existing rating information is available. Recently, transfer learning has been proposed to address this problem by leveraging the knowledge from related recommender systems where rich collaborative data are available. However, most previous transfer learning models assume that entity...

متن کامل

Cross-Domain Kernel Induction for Transfer Learning

The key question in transfer learning (TL) research is how to make model induction transferable across different domains. Common methods so far require source and target domains to have a shared/homogeneous feature space, or the projection of features from heterogeneous domains onto a shared space. This paper proposes a novel framework, which does not require a shared feature space but instead ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2896881